Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(4): 047201, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335354

RESUMO

Partial transport barriers in the chaotic sea of Hamiltonian systems influence classical transport, as they allow for a small flux between chaotic phase-space regions only. We find for higher-dimensional systems that quantum transport through such a partial barrier is more restrictive than expected from two-dimensional maps. We establish a universal transition from quantum suppression to mimicking classical transport. The scaling parameter involves the flux, the size of a Planck cell, and the localization length due to dynamical localization along a resonance channel. This is numerically demonstrated for coupled kicked rotors with a partial barrier that generalizes a cantorus to higher dimensions.

2.
Phys Rev Lett ; 131(18): 187201, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977612

RESUMO

We demonstrate that quantum dynamical localization in the Arnold web of higher-dimensional Hamiltonian systems is destroyed by an intrinsic classical drift. Thus quantum wave packets and eigenstates may explore more of the intricate Arnold web than previously expected. Such a drift typically occurs, as resonance channels widen toward a large chaotic region or toward a junction with other resonance channels. If this drift is strong enough, we find that dynamical localization is destroyed. We establish that this drift-induced delocalization transition is universal and is described by a single transition parameter. Numerical verification is given using a time-periodically kicked Hamiltonian with a four-dimensional phase space.

3.
Phys Rev E ; 108(4-1): 044213, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978712

RESUMO

Quantum many-body systems are commonly considered as quantum chaotic if their spectral statistics, such as the level spacing distribution, agree with those of random matrix theory (RMT). Using the example of the kicked Ising chain we demonstrate that even if both level spacing distribution and eigenvector statistics agree well with random matrix predictions, the entanglement entropy deviates from the expected RMT behavior, i.e., the Page curve. To explain this observation we propose a quantity that is based on the effective Hamiltonian of the kicked system. Specifically, we analyze the distribution of the strengths of the effective spin interactions and compare them with analytical results that we obtain for circular ensembles. Thereby we group the effective spin interactions corresponding to the number k of spins which contribute to the interaction. By this the deviations of the entanglement entropy can be attributed to significantly different behavior of the k-spin interactions compared with RMT.

4.
Phys Rev E ; 108(2): L022203, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723792

RESUMO

A bipartite spin system is proposed for which a fast transfer from one defined state into another exists. For sufficient coupling between the spins, this implements a bit-flipping mechanism, which is much faster than that induced by tunneling. The states correspond in the semiclassical limit to equilibrium points with a stability transition from elliptic-elliptic stability to complex instability for increased coupling. The fast transfer is due to the spiraling characteristics of the complex unstable dynamics. Based on the classical system we find an approximate scaling relation for the transfer time, which even applies in the deep quantum regime. By investigating a simple model system, we show that the classical stability transition is reflected in a fundamental change in the structure of the eigenfunctions.

5.
Phys Rev E ; 107(2-1): 024124, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932552

RESUMO

A bipartite system whose subsystems are fully quantum chaotic and coupled by a perturbative interaction with a tunable strength is a paradigmatic model for investigating how isolated quantum systems relax toward an equilibrium. It is found that quantum coherence of the initial product states in the energy eigenbasis of the subsystems-quantified by the off-diagonal elements of the subsystem density matrices-can be viewed as a resource for equilibration and thermalization as manifested by the entanglement generated. Results are given for four distinct perturbation strength regimes, the ultraweak, weak, intermediate, and strong regimes. For each, three types of tensor product states are considered for the initial state: uniform superpositions, random superpositions, and individual subsystem eigenstates. A universal timescale is identified involving the interaction strength parameter. In particular, maximally coherent initial product states (a form of uniform superpositions) thermalize under time evolution for any perturbation strength in spite of the fact that in the ultraweak perturbative regime the underlying eigenstates of the system have a tensor product structure and are not at all thermal-like; though the time taken to thermalize tends to infinity as the interaction vanishes. Moreover, it is shown that in the ultraweak regime the initial entanglement growth of the system whose initial states are maximally coherent is quadratic-in-time, in contrast to the widely observed linear behavior.

6.
Chaos ; 33(1): 013125, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36725645

RESUMO

Chaotic transport in Hamiltonian systems is often restricted due to the presence of partial barriers, leading to a limited flux between different regions in phase space. Typically, the most restrictive partial barrier in a 2D symplectic map is based on a cantorus, the Cantor set remnants of a broken 1D torus. For a 4D symplectic map, we establish a partial barrier based on what we call a cantorus-NHIM-a normally hyperbolic invariant manifold with the structure of a cantorus. Using a flux formula, we determine the global 4D flux across a partial barrier based on a cantorus-NHIM by approximating it with high-order periodic NHIMs. In addition, we introduce a local 3D flux depending on the position along a resonance channel, which is relevant in the presence of slow Arnold diffusion. Moreover, for a partial barrier composed of stable and unstable manifolds of a NHIM, we utilize periodic NHIMs to quantify the corresponding flux.

7.
Phys Rev Lett ; 129(19): 193901, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399737

RESUMO

We conjecture that chaotic resonance modes in scattering systems are a product of a conditionally invariant measure from classical dynamics and universal exponentially distributed fluctuations. The multifractal structure of the first factor depends strongly on the lifetime of the mode and describes the average of modes with similar lifetime. The conjecture is supported for a dielectric cavity with chaotic ray dynamics at small wavelengths, in particular for experimentally relevant modes with longest lifetime. We explain scarring of the vast majority of modes along segments of rays based on multifractality and universal fluctuations, which is conceptually different from periodic-orbit scarring.

8.
Phys Rev E ; 103(4-1): 042208, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005971

RESUMO

In 4D symplectic maps complex instability of periodic orbits is possible, which cannot occur in the 2D case. We investigate the transition from stable to complex unstable dynamics of a fixed point under parameter variation. The change in the geometry of regular structures is visualized using 3D phase-space slices and in frequency space using the example of two coupled standard maps. The chaotic dynamics is studied using escape time plots and by computations of the 2D invariant manifolds associated with the complex unstable fixed point. Based on a normal-form description, we investigate the underlying transport mechanism by visualizing the escape paths and the long-time confinement in the surrounding of the complex unstable fixed point. We find that the slow escape is governed by the transport along the unstable manifold while going across the approximately invariant planes defined by the corresponding normal form.

9.
Phys Rev E ; 103(4-1): 042204, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005999

RESUMO

We conjecture that in chaotic quantum systems with escape, the intensity statistics for resonance states universally follows an exponential distribution. This requires a scaling by the multifractal mean intensity, which depends on the system and the decay rate of the resonance state. We numerically support the conjecture by studying the phase-space Husimi function and the position representation of resonance states of the chaotic standard map, the baker map, and a random matrix model, each with partial escape.

10.
Phys Rev E ; 102(5-1): 050102, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327075

RESUMO

We investigate entanglement growth for a pair of coupled kicked rotors. For weak coupling, the growth of the entanglement entropy is found to be initially linear followed by a logarithmic growth. We calculate analytically the time after which the entanglement entropy changes its profile, and a good agreement with the numerical result is found. We further show that the different regimes of entanglement growth are associated with different rates of energy growth displayed by a rotor. At a large time, energy grows diffusively, which is preceded by an intermediate dynamical localization. The time span of intermediate dynamical localization decreases with increasing coupling strength. We argue that the observed diffusive energy growth is the result of one rotor acting as an environment to the other, which destroys the coherence. We show that the decay of the coherence is initially exponential followed by a power law.

11.
Phys Rev E ; 101(3-1): 032201, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289886

RESUMO

Understanding stickiness and power-law behavior of Poincaré recurrence statistics is an open problem for higher-dimensional systems, in contrast to the well-understood case of systems with two degrees of freedom. We study such intermittent behavior of chaotic orbits in three-dimensional volume-preserving maps using the example of the Arnold-Beltrami-Childress map. The map has a mixed phase space with a cylindrical regular region surrounded by a chaotic sea for the considered parameters. We observe a characteristic overall power-law decay of the cumulative Poincaré recurrence statistics with significant oscillations superimposed. This slow decay is caused by orbits which spend long times close to the surface of the regular region. Representing such long-trapped orbits in frequency space shows clear signatures of partial barriers and reveals that coupled resonances play an essential role. Using a small number of the most relevant resonances allows for classifying long-trapped orbits. From this the Poincaré recurrence statistics can be divided into different exponentially decaying contributions, which very accurately explains the overall power-law behavior including the oscillations.

12.
Phys Rev E ; 101(3-1): 032212, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32290014

RESUMO

The entanglement production in bipartite quantum systems is studied for initially unentangled product eigenstates of the subsystems, which are assumed to be quantum chaotic. Based on a perturbative computation of the Schmidt eigenvalues of the reduced density matrix, explicit expressions for the time-dependence of entanglement entropies, including the von Neumann entropy, are given. An appropriate rescaling of time and the entropies by their saturation values leads a universal curve, independent of the interaction. The extension to the nonperturbative regime is performed using a recursively embedded perturbation theory to produce the full transition and the saturation values. The analytical results are found to be in good agreement with numerical results for random matrix computations and a dynamical system given by a pair of coupled kicked rotors.

13.
Phys Rev E ; 101(2-1): 022221, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168586

RESUMO

The entanglement of eigenstates in two coupled, classically chaotic kicked tops is studied in dependence of their interaction strength. The transition from the noninteracting and unentangled system toward full random matrix behavior is governed by a universal scaling parameter. Using suitable random matrix transition ensembles we express this transition parameter as a function of the subsystem sizes and the coupling strength for both unitary and orthogonal symmetry classes. The universality is confirmed for the level spacing statistics of the coupled kicked tops and a perturbative description is in good agreement with numerical results. The statistics of Schmidt eigenvalues and entanglement entropies of eigenstates is found to follow a universal scaling as well. Remarkably, this is not only the case for large subsystems of equal size but also if one of them is much smaller. For the entanglement entropies a perturbative description is obtained, which can be extended to large couplings and provides very good agreement with numerical results. Furthermore, the transition of the statistics of the entanglement spectrum toward the random matrix limit is demonstrated for different ratios of the subsystem sizes.

14.
Phys Rev E ; 100(5-1): 052205, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869968

RESUMO

Physical systems are often neither completely closed nor completely open, but instead are best described by dynamical systems with partial escape or absorption. In this paper we introduce classical measures that explain the main properties of resonance eigenfunctions of chaotic quantum systems with partial escape. We construct a family of conditionally invariant measures with varying decay rates by interpolating between the natural measures of the forward and backward dynamics. Numerical simulations in a representative system show that our classical measures correctly describe the main features of the quantum eigenfunctions: their multifractal phase-space distribution, their product structure along stable and unstable directions, and their dependence on the decay rate. The (Jensen-Shannon) distance between classical and quantum measures goes to zero in the semiclassical limit for long- and short-lived eigenfunctions, while it remains finite for intermediate cases.

15.
Phys Rev E ; 100(4-1): 042219, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770964

RESUMO

The lifetimes of optical modes in whispering-gallery cavities depend crucially on the underlying classical ray dynamics, and they may be spoiled by the presence of classical nonlinear resonances due to resonance-assisted tunneling. Here we present an intuitive semiclassical picture that allows for an accurate prediction of decay rates of optical modes in systems with a mixed phase space. We also extend the perturbative description from near-integrable systems to systems with a mixed phase space, and we find equally good agreement. Both approaches are based on the approximation of the actual ray dynamics by an integrable Hamiltonian, which enables us to perform a semiclassical quantization of the system and to introduce a ray-based description of the decay of optical modes. The coupling between them is determined either perturbatively or semiclassically in terms of complex paths.

16.
Phys Rev E ; 100(3-1): 032117, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31640006

RESUMO

Multifractal dimensions allow for characterizing the localization properties of states in complex quantum systems. For ergodic states the finite-size versions of fractal dimensions converge to unity in the limit of large system size. However, the approach to the limiting behavior is remarkably slow. Thus, an understanding of the scaling and finite-size properties of fractal dimensions is essential. We present such a study for random matrix ensembles, and compare with two chaotic quantum systems-the kicked rotor and a spin chain. For random matrix ensembles we analytically obtain the finite-size dependence of the mean behavior of the multifractal dimensions, which provides a lower bound to the typical (logarithmic) averages. We show that finite statistics has remarkably strong effects, so that even random matrix computations deviate from analytic results (and show strong sample-to-sample variation), such that restoring agreement requires exponentially large sample sizes. For the quantized standard map (kicked rotor) the multifractal dimensions are found to follow the random matrix predictions closely, with the same finite statistics effects. For a XXZ spin-chain we find significant deviations from the random matrix prediction-the large-size scaling follows a system-specific path towards unity. This suggests that local many-body Hamiltonians are "weakly ergodic," in the sense that their eigenfunction statistics deviate from random matrix theory.

17.
Phys Rev E ; 99(4-1): 042213, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108719

RESUMO

Nonlinear resonances in the classical phase space lead to a significant enhancement of tunneling. We demonstrate that the double resonance gives rise to a complicated tunneling peak structure. Such double resonances occur in Hamiltonian systems with an at least four-dimensional phase space. To explain the tunneling peak structure, we use the universal description of single and double resonances by the four-dimensional normal-form Hamiltonians. By applying perturbative methods, we reveal the underlying mechanism of enhancement and suppression of tunneling and obtain excellent quantitative agreement. Using a minimal matrix model, we obtain an intuitive understanding.

18.
Phys Rev Lett ; 121(7): 074101, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169099

RESUMO

A hypothesis about the average phase-space distribution of resonance eigenfunctions in chaotic systems with escape through an opening is proposed. Eigenfunctions with decay rate γ are described by a classical measure that (i) is conditionally invariant with classical decay rate γ and (ii) is uniformly distributed on sets with the same temporal distance to the quantum resolved chaotic saddle. This explains the localization of fast-decaying resonance eigenfunctions classically. It is found to occur in the phase-space region having the largest distance to the chaotic saddle. We discuss the dependence on the decay rate γ and the semiclassical limit. The hypothesis is numerically demonstrated for the standard map.

19.
Phys Rev E ; 98(2-1): 022214, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253550

RESUMO

The dynamics in three-dimensional (3D) billiards leads, using a Poincaré section, to a four-dimensional map, which is challenging to visualize. By means of the recently introduced 3D phase-space slices, an intuitive representation of the organization of the mixed phase space with regular and chaotic dynamics is obtained. Of particular interest for applications are constraints to classical transport between different regions of phase space which manifest in the statistics of Poincaré recurrence times. For a 3D paraboloid billiard we observe a slow power-law decay caused by long-trapped trajectories, which we analyze in phase space and in frequency space. Consistent with previous results for 4D maps, we find that (i) trapping takes place close to regular structures outside the Arnold web, (ii) trapping is not due to a generalized island-around-island hierarchy, and (iii) the dynamics of sticky orbits is governed by resonance channels which extend far into the chaotic sea. We find clear signatures of partial transport barriers. Moreover, we visualize the geometry of stochastic layers in resonance channels explored by sticky orbits.

20.
Phys Rev E ; 98(2-1): 022204, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253602

RESUMO

We study the eigenstates of quantum systems with large Hilbert spaces, via their distribution of wave-function amplitudes in a real-space basis. For single-particle "quantum billiards," these real-space amplitudes are known to have Gaussian distribution for chaotic systems. In this work, we formulate and address the corresponding question for many-body lattice quantum systems. For integrable many-body systems, we examine the deviation from Gaussianity and provide evidence that the distribution generically tends toward power-law behavior in the limit of large sizes. We relate the deviation from Gaussianity to the entanglement content of many-body eigenstates. For integrable billiards, we find several cases where the distribution has power-law tails.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...